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A B S T R A C T   

In the past few decades, Synthetic Aperture Radar Interferometry (InSAR) has proven to be a reliable tool for 
monitoring land surface deformations occurring naturally (landslides, earthquakes, and volcanoes) or due to 
some anthropogenic activities, such as extraction of underground materials (, e.g., groundwater, oil, and gas) 
with acceptable accuracy. The availability of SAR data from various satellites have significantly improved this 
technology further notably with collecting data from different radar frequencies (X-, C-, and L-band), different 
spatial resolutions, increased revisit times and diverse imaging geometry including both along ascending and 
descending orbits. This review provides a description about the InSAR state-of-the-art technology and how it has 
been effectively used for detecting surface deformations. The techniques of Persistent Scatterer Interferometry, 
Small Baseline Subset, Stanford Method for Persistent Scatterers, and Offset Tracking are discussed. The paper 
also discusses the strengths and weaknesses of the different InSAR techniques currently employed in detecting 
surface deformations, concerning the various types of land cover. It then highlights the optimal methodology and 
data needs for these different land cover types. This work finally dives into the emergence of new technologies 
for processing big Earth Observation data and discusses the prospects of using machine/deep learning algorithms 
powered by advanced cloud computing infrastructure to mine new information hidden within InSAR products 
and associated land-surface deformations.   

1. Introduction 

Synthetic Aperture Radar Interferometry (InSAR) has been playing 
an essential role in monitoring changes in Earth’s surface. It relies on 
measuring the phase difference between two or more complex values 
SAR images acquired at different times and/or different orbital posi-
tions. Primarily, there are three interferometric distributions; across- 
track interferometry, along-track interferometry, and repeat-pass 
across-track interferometry (Pepe and Cal�o, 2017). 

SAR data becomes more available and accessible than before with 
variously operated radar wavelengths; for instance, P-band (65 cm), L- 
band (23 cm), C-band (5 cm), and X-band (3 cm). SAR images acquired 
with different look angle geometries over the same period could allow 
retrieving complete 3D displacements (Hue et al., 2017), where different 
acquisition modes are available, as well. The main differences are in the 

way of scanning the Earth’s surface like generating a narrow swath 
when using Stripmap mode, a wide swath from ScanSAR mode, or 
viewing the scene from multiple angles when using Spotlight mode. 

Since SAR systems operate in side-looking geometry, the displace-
ment value measured will be in the RADAR Line-Of-Sight (LOS) direc-
tion (Ng et al., 2015). Measurements value in LOS direction is composed 
of vertical, easting and northing components (3D Deformations). 
Decomposing these components require multiple angle SAR scenes, but 
still retrieving the deformations of the northing component is very 
difficult. This because most of the new SAR satellites operate at 
near-polar orbits (parallel to N–S direction), so the viewing geometries 
are blind to N–S displacements. Retrieving 3D deformations have been 
investigated in many studies (Raucoules et al., 2013b; Darvishi et al., 
2018) and it will be discussed later in section 2. 

The main limitations for InSAR techniques are spatial and temporal 
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decorrelations, which occur due to the large gap between two acquisi-
tions in time or space, respectively. Landcover plays an important rule in 
performing InSAR techniques. For instance, the InSAR technique de-
pends on finding coherent (stable) pixels during the deformations time 
to measure surface displacement. Therefore, it is easy to find coherent 
pixels over urban or mountain areas, but there is an effect of high 
buildings and mountains on the Radar signal; however, it is hard to find 
coherent pixels over vegetated areas. 

The InSAR relies on the phase differences between two SAR images 
acquired at different times or different positions (Fig. 1). If we assumed 
that φM; φS; rM; rS; λ are phase of the first SAR image, phase of the 
second SAR image, range distance from the first SAR orbit, range dis-
tance from the second SAR orbit, and operated wavelength, respectively, 
the phase and phase difference (interferogram) can be obtained from the 
following equations: 

φM ¼
4π
λ

rM (1)  

φS¼
4π
λ

rS (2)  

Δφ¼
4π
λ

Δr (3) 

Furthermore, Differential interferograms are generated by subtract-
ing synthetic interferograms from the original interferogram (Moreira 
et al., 2013). There are two main categories for time series InSAR al-
gorithms; Persistent Scatterer (PS) methods, Small Baseline (SB) 
methods, and combined methods. There are two main algorithms for PS; 
the first modeling the deformation in the time domain Permanent 
Scatterer Interferometry (PSI) (Ferretti et al., 2001) and Delft approach 
(Kampes, 2005), while the second modeling the spatial correlation be-
tween interferograms like StaMPS (Hooper et al., 2007). PSI relies on 
performing time series analysis on stable coherent targets called 
Persistent or Permanent Scatterers Scatterers (Ferretti et al., 2001). 
Some targets maintain high coherency for a long time even when 
observed with different geometrical characteristics (Crosetto et al., 
2015). On the other hand, Small Baseline techniques analyze distributed 
targets that may be affected by spatial and temporal decorrelations 
(Pepe et al., 2015). These techniques generate wrapped interferograms 
(2π cycles) that need to be converted to one complete cycle, this pro-
cedure called phase unwrapping (Ferretti et al., 2007) and it is the most 
challenging process in InSAR. 

Until recently, generating automated procedures for surface de-
formations were considered to be challenging due to the differences in 
geomorphological, geological, and geographical settings (Casagli et al., 

Fig. 1. Shows the InSAR geometry, where (M) is the location of first SAR 
acquisition, S is the location of second SAR acquisition, (b) is the spatial 
baseline, (b?) is the perpendicular baseline, (θ) is the incident angle, (h) is the 
elevation of the observed point, and (H) is the altitude of the satellite. 

Table 1 
Shows the surface deformations studies applied over different landcover.  

Study Landcover SAR Data Method 

Rucci et al. (2012) Deserts Sentinel-1 A/B C- 
band 

PSI 

Amighpey and Arabi 
(2016) 

ENVISAT SAR C-band InSAR 

Chang et al. (2018) TerraSAR-X-band InSAR 
Gonnuru and Kumar 

(2018) 
TerraSAR-X-band PSI 

Strozzi et al. (2008) Glaciers JERS-1 L-band Offset Tracking 
Short et al. (2014) RADARSAT-2 C-band DInSAR 
Singhroy et al. (2014) RADARSAT-2 C-band 

COSMO SkyMed X- 
band 

SBAS 

Singhroy and Li 
(2015) 

RADARSAT-2 C-band 
COSMO SkyMed X- 
band 

SBAS 

Euillades et al. (2016) COSMO-SkyMed X- 
band 

PO – SBAS 

Eriksen et al. (2017) TerraSAR-X-band InSAR 
Strozzi et al. (2018a) Sentinel-1 C-band InSAR 
Papoutsis et al. (2013) Mountains ENVISAT C-band StaMPS PSI & 

SBAS 
Raucoules et al. 

(2013b) 
TerraSAR-X-band Offset Tracking 

Arab-Sedze et al. 
(2014) 

ALOS-1 L-band InSAR 

Sansosti et al. (2014) ENVISAT C-band 
COMO-SkyMed X- 
band 

SBAS 

Zebker and Zheng 
(2016) 

COMO-SkyMed X- 
band 
ALOS-1 L-band 

DInSAR 

Dwivedi et al. (2017) ENVISAT C-band StaMPS PSI 
Gama et al. (2017) TerraSAR-X-band SBAS 
Hue et al. (2017) ALOS-1 L-band DInSAR 
Jo et al. (2017) TerraSAR-X-band DInSAR 
Kimura (2017) ALOS-2 L-band DInSAR 
Luca et al. (2017) ENVISAT C-band 

(Level 0) 
SBAS 

Polcari et al. (2017) COMO-SkyMed X- 
band 
Sentinel-1A C-band 

DInSAR 

Strozzi et al. (2017) ENVISAT C-band PSI 
Baek et al. (2018) ALOS-2 L-band DInSAR 
Zhao et al. (2018) ENVISAT C-band & 

ALOS-1 L-band 
Π-RATE 

Zheng et al. (2018) ENVISAT C-band 
Sentinel-1A C-band 

TCP InSAR 

Tao et al. (2012) Rural 
Areas 

ALOS-1 L-band QCT DInSAR 
Raucoules et al. 

(2013a) 
ENVISAT C-band 
ALOS-1 L-band 

PSI 

Zhang et al. (2014) TerraSAR-X-band PSI 
Dong et al. (2018) ALOS-1 L-band 

ENVISAT C-band 
CSI (PSI & SBAS) 

Strozzi et al. (2018a,b) ERS-1/2 C-band 
ENVISAT C-band 
ALOS-1 L-band 
ALOS-2 L-band 
TerraSAR-X-band 
Sentinel-1A C-band 

PSI 

Wei and Sandwell 
(2010) 

Vegetation ERS-1/2 C-band 
ALOS-1 L-band 

SBAS 

Reeves et al. (2014) ERS-1/2 C-band SBAS 
Ng et al. (2015) ALOS L-band SqueeSAR 
Darvishi et al. (2018) Sentinel-1A C-band SBAS 
Liosis et al. (2018) ENVISAT C-band 

ALOS-1 L-band 
Sentinel-1A C-band 

SBAS 

Zhang and Zhao 
(2018) 

TerraSAR-X-band 
COMO-SkyMed X- 
band 
Sentinel-1A C-band 
ALOS-2 L-band 

DInSAR 

Cal�o et al. (2014) Urban 
Areas 

ERS-1/2 C-band 
ENVISAT C-band 

SBAS 

(continued on next page) 
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2016).This review aims to illustrate the appropriate data and methods to 
retrieve surface deformations time series for different land cover types 
with selected case studies. Finally, it contains a concise discussion of 
challenges and future trends, especially to what concerns the processing 
of big interferometric data with novel technologies introduced by the 
ICT sector. 

2. InSAR surface deformations applied over different landcover 
types 

Various research studies have been conducted to retrieve land sur-
face deformations using InSAR technique. Table 1 lists these studies in 
six landcover types; desert, mountains, rural, vegetation, and urban 
areas. Also, Table 1 shows used data and performed technique. 

2.1. Desert 

Desert areas are characterised by similar targets that have less 
decorrelation to shorter radar wavelengths. Performing PSI on X-band or 
C-band to observe ground displacement over desert areas is very effi-
cient because there is an excellent possibility to obtain high PS density. 
Gonnuru and Kumar (2018) and Chang et al. (2018) studied surface 
deformations over an oil field in desert areas using X-ban SAR data 
obtained from TerraSAR-X. The first study performed the PSInSAR 
technique to reveal a maximum subsidence rate of 7.2–10 mm, while the 

second study utilized a spatiotemporal variogram model with the InSAR 
technique and found subsidence of 4 cm. Both studies interpreted the 
subsidence caused due to oil and gas extraction. 

Amighpey and Arabi (2016) correlated land subsidence to water 
level changes over Yazd-Ardakan desert, Iran by utilizing the InSAR 
technique on ten images from ENVISAT C-band. This study found sub-
sidence along Yazd-Ardakan road, west to Ardakan city, and south of 
Yazd city. Moreover, it concluded that the three areas a high degree of 
water-level decline. 

2.2. Glaciers 

Glacier surfaces are displaying relative faster motion than other 
landscapes, so there is no significant difference between various radar 
frequencies for detecting glacier surface motion. Euillades et al. (2016) 
investigated glacier surface velocities time series over Viedma Glacier 
using X-band SAR data acquired from COSMOSky-Med. The generated 
results demonstrated the technique’s capability to obtain ice displace-
ment with a mean surface velocity of 800 m/yr. Short et al. (2014) and 
Strozzi et al. (2018a) investigated land surface deformations over 
permafrost areas. Both studied used C-band SAR data, but the first one 
used SAR data from RADARSAT-2 while the second one used Sentinel-1. 
Short et al. (2014) revealed vertical displacements from 1 to � 12.5 cm 
with a strong correlation with geology and field electrical conductivity 
measurements. Strozzi et al. (2018a) recorded various surface de-
formations rates from landscape to another with a maximum of 10 cm. 
Also, it suggested in-situ measurements for future work to enhance 
surface deformations detected over the permafrost landscape. 

Singhroy et al. (2014) and Singhroy and Li (2015) studied the surface 
deformations resulted from steam injected to the subsurface in the 
process of oil sands over Athabasca and Alberta respectively, Northern 
Canada. Both studies used RADARSAT-2 and COSMO SkyMed with SBAS 
algorithm, levelling, gravimeters, tiltmeters, inclinometers, and GPS. 
Both studies showed a strong correlation between the uplift rates over 
the horizontal injector wells and the rate of steam injection. Moreover, 
the reservoir thickness and surface deformations are not correlated. 
Strozzi et al. (2008) studied the motion of Arctic glaciers at Svalbard, 
Novaya Zemlya and Franz-Josef land using offset tracking on JERS-1 
L-band SAR images. This technique resulted in a consistent estimated 
error. It concluded that the offset tracking technique is strong and ac-
curate with L-band SAR images for glacier movement estimation. This 
study raised the expectation of PALSAR data from the Advanced Land 
Observation Satellite (ALOS). 

2.3. Mountains 

In order to detect surface deformations using the InSAR technique 
over mountainous terrain, all available SAR data is applicable according 
to the various studies found in the literature. Hue et al. (2017) and Jo 
et al. (2017) investigated the surface deformations over Kilauea volcano 
in Hawaii islands using L-band from ALOS and X-band TerraSAR-X SAR 
data, respectively. Hue et al. (2017) performed a joint model to estimate 
3D surface displacement from InSAR LOS measurement. The maximum 
surface displacements observed was � 16 cm toward the caldera with 
magma volume change by � 4.6 � 106 m3. On the other hand, Jo et al. 
(2017) integrated deformation measurements of InSAR and GPS, but the 
atmospheric contribution on X-band was high due to the high terrain. 
RMS for the measurement of the deformation was 3.26 � 1.32 cm and 
2.95 � 0.77 cm from ascending and descending datasets, respectively. 

Raucoules et al. (2013b) and Gama et al. (2017) used X-band SAR 
data from TerraSAR-X but with different techniques. Raucoules et al. 
(2013b) performed offset tracking over La Valette landslide, South 
French Alps. This study observed a 14 m/yr maximum horizontal 
displacement rate and 11 m/yr maximum vertical rate. While Gama 
et al. (2017) performed SBAS over Caraj�as open-pit iron mine in Brazil. 
The observed maximum surface deformation was 500 mm/yr with good 

Table 1 (continued ) 

Study Landcover SAR Data Method 

COMO-SkyMed X- 
band 

Chaussard et al. 
(2014) 

ALOS-1 L-band SB 

Qu et al. (2014) ENVISAT C-band 
ALOS-1 L-band 
TerraSAR-X-band 

SBAS 

Cal�o et al. (2015) TerraSAR-X-band SBAS 
Chet et al. (2015) Ground-Based SAR 

Ku-band 
InSAR 

Costantini et al. 
(2015) 

ERS-1/2 C-band 
ENVISAT C-band 
COMO-SkyMed X- 
band 

PSI 

Normand and Heggy 
(2015) 

RADARSAT-2 C-band SBAS 

Qu et al. (2015) ERS-1/2 C-band 
ENVISAT C-band 
ALOS-1 L-band 

StaMPS (PSI & 
SBAS) 

Bai et al. (2016) TerraSAR-X-band StaMPS PSI 
Casagli et al. (2016) ERS-1/2 C-band 

ENVISAT C-band 
TerraSAR-X-band 
RADARSAT-2 C-band 

PSI 

Pepe et al. (2015) ENVISAT C-band SBAS 
Scifoni et al. (2016) ERS-1/2 C-band 

ENVISAT C-band 
SBAS 

Tong and Schmidt 
(2016) 

ALOS-1 L-band SBAS 

Svigkas et al. (2017) ERS-1/2 C-band 
ENVISAT C-band 

StaMPS (PSI & 
SBAS) 

Yu et al. (2017) COMO-SkyMed X- 
band 
Sentinel-1A C-band 

SBAS 

Aslan et al. (2018) ERS-1/2 C-band 
ENVISAT C-band 
Sentinel-1A C-band 

PSI 

Castellazzi et al. 
(2018) 

ALOS-1 L-band InSAR 

Horst et al. (2018) Sentinel-1A C-band PSI 
Haghighi and Motagh 

(2019) 
ENVISAT C-band 
ALOS-1 L-band 
TerraSAR-X-band 
Sentinel-1A C-band 

SB  
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consistency with leveling measurements. 
Kimura (2017) and Baek et al. (2018) used L-band SAR data from the 

ALOS-2 platform with the DInSAR technique due to the Kumamoto 
earthquake occurred in 2016. Kimura (2017) retrieved 3D surface dis-
placements and compared them with GNSS measurements. 3D surface 
displacements were 70, 50, and 30 cm for eastward, northward and 
upward, respectively. The comparison between InSAR deformations and 
GNSS measurements showed strong agreement with eastward and up-
ward components and less agreement with the northward component. 
Baek et al. (2018) compared between traditional DInSAR with offset 
based phase unwrapping. The maximum surface deformations observed 
was 2 m in horizontal and vertical directions. 

Polcari et al. (2017) investigated the local effects of the Central Italy 
seismic sequence 2016–2017 by combining COSMO-SkyMed and 
Sentinel-1 using the traditional DInSAR. This study observed displace-
ment few centimetres with acceptable accuracy. Sansosti et al. (2014) 
investigated how the improvement of SAR technology increased the 
accuracy of the ground deformations measurement by performing the 
SBAS technique with X-band from COSMO-SkyMed and C-band from 
ERS-1/2 and ENVISAT datasets over Campi Flegrei and Mountain Etna 
volcanic areas in Italy. The physical processes behind the deformation’s 
patterns were determined from the analysis of X-band data. The SBAS 
analysis allowed to detect non-linear deformations associated with 
anthropogenic activities. Second generation SAR sensors allowed to 
capture ground information with a higher level of spatial detail, both in 
natural and urban areas. Moreover, the capability to detect and monitor 
the temporal evolution of intra-building displacements in urban areas. 

Zheng et al. (2018), Dwivedi et al. (2017), and Papoutsis et al. (2013) 
used only C-band SAR data from a different satellite to perform InSAR 
analysis. The first one integrated InSAR measurement with GRACE data 
to analyze the surface deformations over Xuzhou coalfield, China. This 
study found that the main reasons for surface subsidence were under-
ground mining. The second two studies utilized the StaMPS technique 
on ENVISAT data, Dwivedi et al. (2017) observed surface displacements 
of � 20 to 25 mm/yr over Tehri, India. Whereas Papoutsis et al. (2013) 
retrieved surface displacements range from � 10 to 150 mm/yr over 
Santorini island, Greece. 

The combination of poly-interferogram rate and time-series esti-
mator algorithm (Π-RATE) were applied on SAR data acquired over 
Linfen-Yuncheng Basin, China, and allowed to observe the surface 
displacement of the basin by (Zhao et al., 2018). Π-RATE employs a 
pixel-wise approach to calculate deformations rates at pixels that are 
coherent in different numbers of interferograms, thus ensuring that 
useful information about the magnitude and spatial extent of the de-
formations field can be retrieved. 

Mountainous areas represent a magnificent landscape to observe 
high PS density but also mountains produce a scattering problem by 
redirecting the radar signal. Most studies used different radar wave-
lengths to detect surface displacement over mountainous areas, and 
there is no advantage of using a specific frequency over others. 

2.4. Rural 

Rural areas have some aspects from urban areas and others from 
desert areas. Raucoules et al. (2013a) investigated land subsidence over 
0.3 km3 by performing the PSI technique on C-band ENVISAT and 
L-band ALOS-1. The main finding is the boundary of the subsidence area 
with a maximum deformations rate of 9 cm/yr. Zhang et al. (2014) 
applied the same technique by using TerraSAR X-band over the Northern 
part of the Tianjin city of China. This study split the LOS deformations to 
main and periodic deformations with maximum subsidence rate and 
acceleration 110 mm/yr and 19 mm/yr2, respectively. 

Strozzi et al. (2018b) investigated the surface motions from satellite 
InSAR and their relationship with landslides movements in Peru at 
Carhuaz city by using PSI technique but with more SAR data than the 
previous studies. These displacement rates were classified according the 

speed of movements; 0–2 cm/a, 2–10 cm/a, >10 cm/a, and undefined 
movement. 

Tao et al. (2012) performed the Quasi-Coherent Targets (QCTs) 
based on DInSAR analysis using L-band SAR data from ALOS-1 over 
suburban Tianjin, China. It observed land subsidence rate of 2 cm/yr. 
Dong et al. (2018) combined persistent scatterers with distributed 
scatterers into an approach called Coherent Scatterer InSAR (CSI). The 
comparison between CSI and traditional InSAR showed that; the CSI is 
five times more time-consuming; the CSI requires four times more 
storage space, the CSI density points are ten times more, and the use of 
CSI with L-band data provided high-quality points over vegetated areas. 
This new method is facing the challenge of Sentinel-1 new generation. 

2.5. Vegetation 

Vegetation land cover is the most complicated land cover for SAR 
interferometry analysis. Since InSAR relies on finding pixels remain 
coherent for an extended period during the time-series analysis, vege-
tation land cover represents a fast-changing scattering characteristic due 
to the phonological cycle. Here are some studies that attempted to 
retrieve surface deformations over vegetation land cover. 

Wei and Sandwell (2010) combined SAR data from ERS C-band and 
ALOS L-band with MODIS NDVI to investigate surface deformations over 
vegetated areas in California. This study showed that when the NDVI is 
less than 0.3, the interferograms from both satellites have high coher-
ence. The comparison between ALOS and ERS showed that ALOS in-
terferograms showed higher coherence than ERS generally, but it was 
less over sandy surfaces. 

Reeves et al. (2014) investigated the uncertainty of implementing 
SBAS analysis for processing InSAR data to estimate surface de-
formations over agricultural areas in San Luis Valley (SLV), Colorado. 
This study relied on calculating the coherence for each interferogram 
using Gaussian distribution, and then it used these coherence values to 
estimate the uncertainty in the interferometric phase. This study pro-
posed a method that allowed to estimate the uncertainty on a pixel by 
pixel, before performing SBAS analysis. 

Liosis et al. (2018) studied the ground subsidence in the rural areas of 
Al Wagan, UAE, an arid region at the edge of Al-Rub’ al-Khali desert, 
with generally flat terrain also including some dunes. Farms and vege-
tated areas occupy lands of Al Wagan. This study used data from 
ENVISAT, ALOS, and Sentinel-1A. The cumulative subsidence showed 
that there is a significant vertical deformation during summer. A direct 
relationship between subsidence obtained from SAR and groundwater 
level fluctuation have been found in this study. The main problem was 
spatial and temporal decorrelation in the study area. It suggested future 
work to include accurate field measurements using GNSS to validate the 
SAR time-series deformations. 

Ng et al. (2015) studied the land deformations in the Gippsland 
Basin, Victoria, Australia using SqueeSAR approach by combining 
Persistent Scatterers with Distributed Scatterers on L-band ALOS SAR 
data. It suggested that the basin is relatively stable with displacements 
rate between 10 to � 10 mm/yr. 

2.6. Urban areas 

Most of the studies in the related literature on retrieving surface 
deformations over urban areas used more than one radar wavelength, as 
finding coherent pixels are more feasible over urban areas. 

Generally, the availability and wide distribution of C-band SAR data 
directed most of the researchers to use this type of data to monitor 
surface deformations over urban areas, such as Normand and Heggy 
(2015) from RADARSAT-2, Pepe et al. (2015) from ENVISAT, Horst et al. 
(2018) from Sentinel-1, Scifoni et al. (2016) from ERS-1/2 and ENVI-
SAT, and Aslan et al. (2018) from ERS-1/2, ENVISAT, and Sentinel-1. 
Normand and Heggy (2015) retrieved surface deformations rate of � 2 
mm/yr over Montreal, Canada, and Horst et al. (2018) retrieved 120 
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mm/yr surface deformations rate. Pepe et al. (2015) retrieved 3D sur-
face displacements by using the SBAS with the Minimum Acceleration 
technique, while Scifoni et al. (2016) used the same technique and 
correlate it with the geology. 

Aslan et al. (2018) and Cal�o et al. (2015) investigated land surface 
deformations over Istanbul city, Turkey. The first one performed the PSI 
technique with C-band from ERS-1/-2, ENVISAT, and Sentinel-1 while 
the second one performed SBAS with X-band from TerraSAR-X. Both 
studies observed land subsidence around 10 mm/yr. Another study used 
TerraSAR-X data by Bai et al. (2016) via the StaMPS approach to retrieve 
maximum land surface subsidence and uplift rate 67.3 and 17.5 mm/yr, 
respectively over Wuhan city, China. 

Chaussard et al. (2014) and Castellazzi et al. (2018) utilized L-band 
SAR data obtained from ALOS to detect surface deformations over 
Mexico city. The first study retrieved a maximum surface subsidence 
rate of 30 cm/yr with the small baseline technique. While the second 
study improved GRACE resolution with InSAR deformation measure-
ments and revealed new subsidence regions with a maximum subsidence 
rate of 20 cm/yr. Tong and Schmidt (2016) used the same radar fre-
quency with the SBAS technique and observed a relationship between 
landslide and precipitation at Cascade Landslide in Washington. 

The combination of C-band data with X-band data to retrieve the 
surface displacement received intensive studies (e.g., Cal�o et al., 2014; 
Casagli et al., 2016; Costantini et al., 2015; Yu et al., 2017). However, 
Cal�o et al. (2014) and Yu et al. (2017) used the SBAS technique while 
Casagli et al. (2016) and Costantini et al. (2015) used the PSI technique. 
Cal�o et al. (2014), Costantini et al. (2015), and Yu et al. (2017) proved 
that X-band retrieved surface deformations in areas C-band unable to 
retrieve. Moreover, these studies concluded that accuracy is better when 
using X-band than C-band. 

Qu et al. (2015) utilized the StaMPS technique with the combination 
of C-band with L-band SAR data to retrieve land subsidence up to 53 
mm/yr and land uplift up to 20 mm/yr around Houston-Galveston, 
Texas. This study mentioned that the main reason for the ground de-
formations is groundwater and hydrocarbon withdrawal. 

Qu et al. (2014) studied the land subsidence in Xi’an city, China 
using a combination of X-band, C-band, and L-band by performing the 
SBAS technique. This analysis detected four large subsidence zones and 
observing ground fissures and faults. Haghighi and Motagh (2019) 
performed the same combination with the same technique to study the 
ground surface deformations over Tehran plain in Iran. This analysis 
identified three dominant subsidence features; the southwest of Tehran, 
near IKA international airport, and Varamin with a maximum subsi-
dence rate of more than 25 cm/yr. 

Chet et al. (2015) presented experimental results of the 
Ground-Based Synthetic Aperture RADAR (GBSAR) in surface de-
formations monitoring at Peninsular of Malaysia using Ku-band. GBSAR 
has proved significant in-ground deformations monitoring by the 
capability of applied over broad areas, avoid weather conditions, and 
high change detection capability (sub-millimeter). The experiment 
showed that the GBSAR is capable of detecting sub-centimeter changes 
with an error of 5 mm and could attain a significantly high coherence of 
more than 0.9 between interferometric image pairs. 

3. Discussions 

InSAR technique has been applied to obtain surface deformations 
due to different causes; volcanic activities, landslide, subsidence, and 
oil, gas, and groundwater extraction, etc. with acceptable accuracy. This 
paper discusses retrieving the surface deformations over different land 
cover types from which appropriate SAR data and method for each land 
cover. Choosing the method and the data depends on some character-
istics of the landcover such as the probability of determining PSs or DSs 
which differ from one landcover to another, but generally, PSs have 
more probability over the human-made structure while DSs have higher 
potentiality over natural surfaces. Another factor that needs to be 

considered when choosing the data and method is the rate of the surface 
movement; different landcover have a different response rate to the 
deformations such as glacier surface has a higher rate than the desert 
surface. From another point of view, the causes of the deformations 
affect the deformations rate, surface deformations due to groundwater 
exploitation has low rate than surface deformations due to landslide or 
volcanic activities. 

Along with these considerations, some challenges are arising when 
using the InSAR technique for detecting surface deformations. The main 
challenge facing this technique is the error correction due to the travel 
radar signal through the atmosphere (Casu et al., 2011; Gudmundsson 
et al., 2002). Particles composing the atmosphere delay the radar signal, 
especially the wet parts due to water vapour. Other effects of atmo-
spheric particles are introducing turbulence in the interferograms 
known as Atmospheric Phase Screen (APS). Moreover, variations of 
pressure, temperature, and relative humidity causing 15–20 cm of de-
formations, which is more than the surface deformations of interest. 
There are two general groups to estimate and remove APS. The first one 
depends on the statistical characteristics of the atmospheric phase, 
which it is correlated in space and uncorrelated in time. This approach 
uses spatial and temporal filters to estimate and remove the atmospheric 
phase. The second relies on using auxiliary information to estimate and 
remove the atmospheric phase, which include weather models, 
multi-spectral observations, or GPS measurements which they are hard 
to synchronise with SAR data, this lack in time will result in inaccuracies 
(; Fattahi et al., 2017b; Jung et al., 2013b). 

The second challenge to use the InSAR technique for detecting 3D 
surface deformations. The 3D composed of three components; east-west, 
north-south, and up-down which is necessary to obtain data along both 
ascending and descending orbits (Michel et al., 1999; Samsonov and 
d’Oreye, 2012). The major challenge of retrieving these components is 
the north-south movement (Wright et al., 2004; Strozzi et al., 2002). 
Studies retrieved these three components observed high RMS error for 
the north-south component compared to the other components (Jung 
et al., 2011; Fialko et al., 2001). The difficulty of measuring this 
component due to radar satellites operation in near-polar orbit 
(north-south movement) which is parallel to this component and makes 
the satellite blind to move in this direction even with right-left – looking 
system and ascending and descending imaging. The right direct solution 
for this challenge is launching radar satellites operate in an east-west 
direction and combine it is data with current operating radar satellites. 

The development of the new advanced imaging mode, Interfero-
metric Wide (IW) swath mode by implementing Terrain Observation by 
Progressive Scans (TOPS) enhances the spatial coverage and image 
quality. TOPS has the capability to switch the radar antenna beam be-
tween the three sub-swaths to achieve wide swath coverage (250 km 
with a spatial resolution of 5 � 20m) in comparison with ScanSAR mode. 
The result of illuminating all targets on the ground by the entire azimuth 
antenna pattern mitigates the inaccurate estimation of doppler centroid 
mean frequency and leads to a constant signal-to-noise ratio (Fattahi 
et al., 2017a; Jung et al., 2013a; Mastro et al., 2020). 

The future trends of this technology are providing near real-time 
information about surface deformations. The possibility of this trend 
coming from the second generation of SAR satellites which they provide 
high spatial and temporal resolution allowed to provide near real-time 
information. For example, Sentinel-2 satellites provide a revisit period 
of 5 days from one satellite over the equator and 2–3 days from two 
satellites at mid-latitude. This high temporal resolution will help to 
study the stages of fast movements and short period deformations. 

However, as shown in the previous sections of this review, ground 
deformation mapping using diverse Persistent Scatterer techniques 
tailored for the various land cover types, have nearly become a com-
modity. The future active field of research for SAR interferometry arises 
from Big Data era; we now have and expect to have even more SAR 
sensors available to process, while the wealth of knowledge in inter-
ferometric stacks remains hidden. Therefore the challenges for the next 
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day is to unlock this potential and reflect the needs to 1) perform fully 
automatic unified and land-cover agnostic interferometric processing to 
monitor large geographic areas, even at national scale, and if possible 
address the challenge for generation of a 3D deformation field as dis-
cussed previously, 2) develop alert systems that inform decision-makers 
for hotspot areas undergoing significant deformation, 3) detect changes 
in the deformation regimes over critical assets in the urban environment, 
4) and combine satellite interferometry products with other open data 
sources, potentially with industrial data, to create new processing chains 
the produce new scientific and business value. 

4. Satellite interferometry and big data processing 

This work dives into the emergence of new technologies for finding 
faster, cost-effective ways to process big Earth Observation data at scale. 
The focus of this part of the review is on the processing of big interfer-
ometric synthetic aperture radar datasets, rather than on generic remote 
sensing assets. We explore emerging technologies under three axes: (i) 
the availability of cloud infrastructures and high-performance 
computing environments that allow efficient multi-temporal PSI pro-
cessing, even at national scale, (ii) the organisation of interferometric 
datasets in advanced geospatial databases called Data Cubes, which 
allow enhanced management of long time-series of interferometric 
measurements, and (iii) the prospects of using machine/deep learning 
algorithms powered by advanced cloud computing infrastructure to 
either generate more robust radar interferometry products or mine new 
information hidden within InSAR products and associated land-surface 
deformations, extract new knowledge and develop novel value-adding 
processing chains. 

4.1. Interferometric processing on the cloud 

The new generation of Earth Observation satellites from the Sentinel 
missions generate vast amounts of data that are not easily integrated 
into processing chains outside the ground segments of space agencies. 
Very often, public and private institutions aiming at delivering end-user 
services based on Earth Observation data do not possess the computing 
power and storage capacity to profit from these new data flows. 

The Helix Nebula Initiative1 started as a Public-Private-Partnership 
(PPP) to evaluate the needs of European compute-intense scientific 
research organisations and their exploitation of a Cloud Computing 
Infrastructure. Through the Helix Nebula Science Cloud initiative, a 
partnership was established between leading IT providers and some of 
Europe’s biggest research centres that deployed and tested the infra-
structure. One of the critical Use Cases of the Helix Nebula initiative is 
the one led by the European Space Agency (ESA), forming the ESA 
SuperSites Exploitation Platform (SSEP) Flagship. 

SSEP developments comprised an instance of an exploitation plat-
form for radar imagery in the context of geo-hazards, for the sharing of 
SAR data and the exploitation of interferometry processing on those data 
focusing on earthquake and volcano research. A large amount of SAR 
data is accessible to science communities dealing with interferometry, 
landslide and change detection. The SSEP project brings together 
existing software components and EO data in a portal that allows geo- 
hazard scientists to apply their algorithms and tools to analyze the 
data. Instead of downloading the data and applying their tools, users are 
presented with a wide selection of tools that they can apply within the 
portal, using cloud and grid technologies to achieve high performance 
and efficient use of communications links. 

The SSEP flagship use case enabled Helix Nebula to mature its 
federated Cloud architecture and ultimately allowed ESA to analyze the 
feasibility and benefits of cloud deployments and paved the way to the 
development of the Thematic Exploitation Platform (TEP) initiatives. 

The TEP’s canonical scenarios have moved the processing to the data, 
rather than the data to the users, thereby enabling ultra-fast data access 
and processing. This idea is an evolution of the Agency’s Grid Processing 
on Demand (G-POD) system, the SSEP, and the integration of scientific 
applications and services for the FP7 EC projects (e.g. GEOWOW, Sen-
SyF) and the experience gained with integration and deployment APIs 
leveraged within the Helix Nebula initiative. 

Since 2018 and in order to facilitate and standardise access to data, 
the European Commission has funded the deployment of five cloud- 
based platforms providing centralised access to Copernicus data and 
information, as well as to cloud processing tools (open source and/or on 
a pay-per-use basis). These platforms are known as the DIAS, or Data and 
Information Access Services (DIAS). DIAS’s objective is to become 
breeding grounds for innovative applications or “algorithm factories” 
allowing users to discover, manipulate, process and download Coper-
nicus data and information. 

Considering the processing of interferometric stacks on the cloud, 
there have recently been some research activities to automate PSI and/ 
or SBAS processing chains. De Luca et al. (2015) have developed G-POD, 
a web tool for the unsupervised retrieval of Earth’s surface deformation 
velocities using an online Parallel Small Baseline Subset (P-SBAS) 
approach (Casu et al., 2014) tailored for ERS and Envisat datasets. The 
ESA funded G-POD is a generic GRID-based operational environment 
coupled with high-performance and sizeable computing resources 
managed by GRID technologies. The architecture of the platform in-
cludes over 200 Working Nodes and more than 70 TB of EO data online. 
There are links with data providers and satellite imagery repositories. 

The evolution of G-POD, so that it accommodates Sentinel-1A&B 
datasets, has been recently published by Manunta et al. (2019). The 
CNR-IREA team has put into place a methodology to automatically 
process coregistered interferometric vast swath stacks using enhanced 
spectral diversity (Fattahi et al., 2017a). It makes use of both multicore 
and multimode programming techniques, and consists of an ad hoc 
designed distributed storage implementation (Manunta et al., 2019), 
aimed at providing scalable performances for massive amounts of data 
to be processed (Zinno et al., 2015, 2016, Zinno et al., 2017). The 
approach has been tested for the whole Italian territory consisting of 
2740 Sentinel-1 slices, while the results have been validated by nearly 
500 GPS stations scattered over Italy. 

According to our knowledge, there are a few other research activities 
to perform national scale the mapping using PSI on the cloud, which has 
not been published yet. These include the InSAR Norway2 project, 
managed and coordinated by the Geological Survey of Norway. The 
project has processed Sentinel-1 SAR data from both ascending and 
descending orbits to generate deformation rate histories for two lines of 
sight vectors, therefore, unmixing vertical and horizontal displacements. 
Besides, the National Observatory of Athens developed a similar appli-
cation that aims at national scale deformation mapping in Greece. The 
observatory has developed implementations of the InSAR Scientific 
Computing Environment (ISCE) and StaMPS software for interferogram 
formation and PSI analysis respectively, to be executed in distributed 
cloud environments. Finally, there are two similar applications for 
mapping land motion over the United Kingdom since 2015, TRE 
ALTAMIRA and Geomatic Ventures Limited (GVL). TRE ALTAMIRA has 
processed more than 7000 satellite radar images to generate a nation- 
wide database of displacement measurements, while GVL using its in- 
house advanced interferometric SAR (InSAR) analysis of over 2000 
Sentinel-1 to generate a relative land motion map.3 

4.2. Data cubes for SAR interferometry datasets 

EO data cube is a relatively new term, which describes the 

1 https://www.helix-nebula.eu/. 

2 https://insar.ngu.no/.  
3 https://www.geomaticventures.com/uk-map. 

M. El Kamali et al.                                                                                                                                                                                                                             

https://www.helix-nebula.eu/
https://insar.ngu.no/
https://www.geomaticventures.com/uk-map


Remote Sensing Applications: Society and Environment 19 (2020) 100358

7

organisation (or “cubing”) of raster data into a database-like structure 
that enables the efficient Spatio-temporal querying and processing of 
satellite images (BDVA, 2017). EO data, having the 5Vs of big data 
(Velocity, Volume, Value, Variety, and Veracity), have an inherent 
challenge; how to optimise information extraction from these data 
cubes? The opportunity that is addressed by the data cube concept is the 
exploitation of past and daily satellite observations to learn from the 
past, identify trends hidden in the big EO data, extract new knowledge 
and potentially short-term forecast some environmental variables. 

Some of the most successful representations of the EO data cube 
concept implementations are the Australian Geoscience Data Cube 
(AGDC,4 Lewis et al., 2017), the EO Data Cube (EODC5), the Earth 
System Data Cube (ESDC6), the Swiss Data Cube (Giuliani et al., 2017), 
the Common Sensing Data Cube (CSDC), the Ghana Data Cube (Haar-
paintner et al., 5 2018), Earth on Amazon Web Services (EAWS7), and 
Google Earth Engine (GEE8). In contrast to the “traditional” database 
structure, which cannot handle (either at all or not in scale) geospatial 
data, the AGDC, EODC and ESDC rely on open source geospatial relation 
databases (e.g. PostgreSQL/PostGIS and Rasdaman, as by Baumann 
et al., 2019) to implement the EO cube concept. Less scalable GEE adopts 
a different approach to implement the concept and EAWS, which use 
proprietary cloud software and infrastructure to process the data in a file 
system-based concept. 

Currently, most known Data Cube implementations rely on optical 
imagery (Dhu et al., 2017; Baumann et al., 2018) and only a few of them 
offer access to SAR products. Currently, two Data Cubes implementa-
tions focus exclusively on the use of SAR imagery. These are the 
SAR-Enabled Australian Data Cube (Ticehurst et al., 2019) and the Swiss 
Data Cube (Truckenbrodt et al., 2019). Both of them rely on the Open 
Data Cube (ODC9) initiative (Killough, 2018), populated with SAR data 
following the CEOS Analysis Ready Data (ARD) specifications. ODC is an 
open-source geospatial data management and analysis software project 
which has at its core a set of Python libraries and PostgreSQL database to 
allow working with geospatial raster data. 

The Swiss Data Cube, in particular, is based on a cloud computing 
platform hosting 35 years and several TB of radiometrically terrain 
corrected SAR gamma nought backscatter data over the entire county. 
The Australian Data Cube, on the other hand, has created a unique 
dataset based on satellite interferometry by-products. This consists of 
multi-temporal coherence layers, which can be used for land-cover 
change (Plank, 2014) and/or vegetation growth (Tamm et al., 2016) 
studies. 

An excellent example, although still at a concept level, for exploiting 
Data Cubes for deformation monitoring using interferometric tech-
niques is presented by Lazecky et al., 2016). In this approach, a special 
geo-database is designed to ingest, store and manage coregistered 
Sentinel-1 bursts directly. Burst stacks are then processed on demand for 
user-selected areas of interest, using PSI as implemented by STaMPS 
software. At a post-processing phase, a data mining approach is applied 
for detecting deformation outlier estimates (Bakon et al., 2017) and 
creating a more reliable ground velocity pattern. 

4.3. Deep/machine learning for satellite interferometry 

While research on artificial intelligence has experienced significant 
growth over the last decade and data science has nearly become a 
commodity in various industries, deep learning has been one of the 
fastest-growing trends in big data analysis and was deemed one of the 

ten breakthrough technologies of 2013. In-depth learning research has 
been extensively pushed by Internet companies, such as Google, Baidu, 
Microsoft, and Facebook, for several image analysis tasks, including 
image indexing, segmentation, and object detection. However, it is only 
very recently that deep learning technologies were introduced to the EO 
research community (Zhu et al., 2017) for data mining and information 
extraction from big satellite data. 

According to Soenen (2019), the ever-broadening use of deep 
learning in remote sensing is due to two trends: 1) availability of cloud 
computing infrastructure and resources, including GPUs; 2) the devel-
opment of easy to use machine learning libraries like Google’s Tensor-
flow10, AWS SageMaker,11 sci-kit learn,12 and other open-source 
frameworks; and 3) an expanding ecosystem of services for creating 
labelled training data (Scale,13 Figure Eight14) as well as open-labelled 
datasets tailored for satellite imagery, like SpaceNet on AWS.15 

Here, we discuss the use of deep learning on interferometric syn-
thetic aperture radar data. This is a new field that has started to gain 
increased attention in the past twelve months, and we expect that the 
number of research projects will kick-off. There are currently two fam-
ilies of research works related to deep learning on InSAR; the first one 
focuses on the automatic detection of ground deformation for setting-up 
an alert mechanism. This is accomplished through the recognition of 
interferometric phase fringes associated with ground deformation and 
eliminating background noise and fringes. The second family of deep 
learning processing chains is motivated by the well-formulated, ill-posed 
problem of phase unwrapping on satellite interferometry and medical 
imaging. 

4.3.1. Volcanic ground deformation detection 
Anantrasirichai et al. (2018) were the first ones ever to use deep 

learning on SAR interferograms to detect deformation. In their pioneer 
work, they processed more than 30,000 short-term wrapped interfero-
grams to automatically detect volcanic ground deformation at over 900 
volcanic areas around the world. They pre-train the network using an 
older archive of interferograms for ESA’s Envisat satellite. Since most of 
the interferograms do not contain any deformation and in order to 
balance the training sample classes through data augmentation, the 
authors increase the number of positive examples (i.e. interferograms 
containing volcanic deformation) through shifting, flipping, rotating 
and distorting the shape of positive examples. They then employ a 
transfer learning strategy for the AlexNet Pre-trained Convolutional 
Neural Network (CNN). The model identified 104 positive results con-
tained concentric fringes around the volcano, and for which even ex-
perts were unable to determine from a single interferogram whether the 
fringes were caused by volcanic deformation or atmospheric artefacts. 
Overall, the Anantrasirichai et al. (2018) proof-of-concept study 
demonstrated the ability of CNNs to identify rapidly deforming systems 
that generate multiple fringes in wrapped interferograms, which for a 
12-day C-band interferogram, this corresponds to a deformation rate of 
1.8 m/year. 

Valade et al. (2019), build upon the study of Anantrasirichai et al. 
(2018) and trained a CNN on synthetically generated interferograms. 
The main progress is that Valade et al. (2019) is better at augmenting the 
deformation samples to prevent overfitting. They produce synthetic 
training data, allowing the generation of an unlimited number of in-
terferograms, and avoiding the time-consuming task of labelling in-
terferograms where deformation is identified through 
photo-interpretation. Besides, Valade et al., 2019 outputs clean phase 

4 http://www.datacube.org.au/.  
5 http://eodatacube.eu/.  
6 http://earthsystemdatacube.net/.  
7 https://aws.amazon.com/earth/.  
8 https://earthengine.google.com/.  
9 https://www.opendatacube.org/. 

10 https://www.tensorflow.org/.  
11 https://aws.amazon.com/sagemaker/.  
12 https://scikit-learn.org/stable/.  
13 https://scale.com/.  
14 https://www.figure-eight.com/.  
15 https://spacenetchallenge.github.io/datasets/datasetHomePage.html. 
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gradients which can be used directly to quantify volcanic deformation, 
whereas Anantrasirichai et al. (2018) estimate the probability a certain 
interferogram contain deformation fringes. Lastly, instead of using 
AlexNet as a pre-trained network, Valade et al. (2019) was designed 
from scratch and trained on a synthetic dataset, thereby allowing more 
flexibility. 

Anantrasirichai and colleagues, however, in a new study by Anan-
trasirichai et al. (2019), also used synthetic interferograms to train the 
CNN model, however, based on analytic models simulating realistic 
deformation sources in volcanic settings. The synthetic interferograms 
in Anantrasirichai et al. (2019) are generated from i) synthetic defor-
mation signals produced using simple elastic sources for earthquakes, 
dykes, sills and point pressure changes at magma chambers, ii) stratified 
atmospheric interferograms obtained from the Generic Atmospheric 
Correction Online Service (Yu et al., 2018), and iii) turbulent atmo-
spheric interferograms simulated using the statistical characteristics of 
correlated noise in real interferograms (Biggs et al., 2007). This 
enhanced approach achieves better performance than Anantrasirichai 
et al. (2018) that uses real interferograms alone, decreasing the number 
of false positives by >80%. 

The MATTCH project – Machine Learning methods for SAR-derived 
Time Series Trend Change Detection – has a similar objective to the 
research works presented above. MATTCH aims to apply Machine 
Learning techniques to InSAR data, for identifying persistent scatterers 
exhibiting displacement time series characterised by a change in trend 
or, more generally, an “anomalous behaviour”. To capture the temporal 
dependencies in the long displacement time series, the leading Deep 
Learning architectures proposed by MATTCH for the analysis are Long 
Short-term Memory (LSTM) and Gate Recurrent Unit (GRU). 

4.3.2. Phase unwrapping 
Phase unwrapping is a classing signal processing problem that refers 

to recovering the original phase value (integer ambiguities) from its 
wrapped, modulo 2π form. Two-dimensional phase unwrapping prob-
lem arises in many applications such as optical measurement techniques 
(e.g., digital holographic interferometry and fringe projection profil-
ometry, InSAR and Magnetic Resonance Imaging (MRI). 

Feng et al., 2019 is one of the first works to train deep neural net-
works to perform fringe analysis, for a fringe projection profilometry use 
case. Spoorthi et al., 2018 propose a new framework for unwrapping the 
interferometric phase, formulating a semantic segmentation problem 
and using deep Fully Convolutional Neural Networks (FCN). Their 
model, termed as PhaseN consists of an encoder network, a 

corresponding decoder network followed by a pixel-wise classification 
layer. Training is performed using simulated data of wrapped and the 
corresponding unwrapped interferograms. This model achieves excel-
lent performance under severe noise conditions and is computationally 
fast. Zhang et al., 2019, also formulate a semantic segmentation and 
propose a similar deep CNN, named DeepLabV3þ, the problem for phase 
unwrapping. Zhang et al., 2019 performed benchmarks and showed that 
their deep learning model outperforms the conventional path-dependent 
and path-independent algorithms. 

Given these latest advancements, there are new research projects 
that exploit computing depth and surface orientation maps directly from 
single images to derive an automated solution to unwrapping. Using 
deep networks with linked pipelines working at different spatial scales, 
the output maps are gradually refined, with information passing down 
from coarser to more beautiful scales. These research works have not yet 
published any results. 

4.4. Semantic data mining 

Sentinel-1 data for interferometric analysis, on the other hand, have 
two distinct characteristics: 1) they are made available on a free and 
open basis and 2) they are big data: indicatively the data volume of one 
month of Sentinel-1A acquisitions accounts for the entire ERS & Envisat 
archive. Similarly, Copernicus data sources are variable ranging from 
raw Sentinel data to in-situ information and model outputs (e.g. CAMS) 
with different quality standards, and in some instances such as the 
Sentinel-4 mission, data will arrive at high velocity. 

Pure availability and accessibility of the plain interferometric data is 
only a first step. The EO data gains value only once it is s analysed, 
correlated and enriched with other data sources, and turned into in-
formation and knowledge. The sheer volume of the interferometric data 
- both per time and aggregated over time poses data management and 
analysis challenges that exceed the capabilities of current data man-
agement and analysis solutions for EO data. 

The next logical step is to describe the data, products, and tools 
tailored for satellite interferometry, to create in other words ontologies 
that link different types of resources together, for a specific application 
(Fig. 2). Koubarakis et al. (2016), argue on the use of the linked data 
paradigm for significant data discovery and integration, using optical 
remote sensing use cases. 

Semantic representation of interferometric data could pave the way 
for the use of other technologies, such as data mining and semantic 
querying. These technologies enable semantic-based data mining. 

Fig. 2. Describing and linking space and processing assets using ontologies.  
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Indicatively, using these technologies one could ask the virtual database 
and retrieve suitable satellite imagery to conduct time-series interfer-
ometry, in previously high earthquake hazard areas in Chile, which 
contain or are close to cities with more than 50,000 inhabitants. 
Semantics-based data mining can lead the way for employing analytics 
applications and discover patterns in the available interferometric data. 

5. Conclusions 

Synthetic Aperture Radar Interferometry has become one of the most 
valuable techniques for detecting surface deformations in the last past 
decades. InSAR techniques have been utilized to detect surface de-
formations over different types of land cover. This paper can be 
considered as a manual for choosing the appropriate SAR data and 
methodology for various land cover types. However, selecting SAR data 
for specific land cover depends mainly on the characteristics of the 
surface and how it is reacted with the radar signal while choosing the 
appropriate methods depending on the radar signal response from the 
targeted surface. Moreover, there are combinations of techniques to 
improve the accuracy of detecting the surface deformations, and these 
combinations are varying from land cover type to another depending on 
the accuracy level that can be provided from InSAR techniques over the 
targeted land cover. This concludes that it is hard to generate one 
automated model to retrieve surface deformations over various land 
cover types. 

Furthermore, this paper discusses the current challenges are facing 
InSAR techniques for surface deformations with the possible future 
trends for this technology. According to our view, the future of SAR 
interferometry lays in four axes: 1) large scale interferometric process-
ing, 2) InSAR data cubes for analytics, 3) deep learning applications for 
deformation detection and 4) semantic-based interferometric data 
mining. 
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